发布时间:2023-09-19 17:51:50
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇航天航空技术,期待它们能激发您的灵感。
关键词 无线电技术;导航定位;航天航空
中图分类号V19 文献标识码A 文章编号 1674-6708(2013)100-0189-02
0 引言
近时期,无线电技术在军事上和民用上和航天航空上的研究越来越多,无线电技术是一个黑匣子,看不见摸不着的一门无线通信技术,无线电技术是一种具有良好的跟踪性能、识别定位性能的一种新型的技术,其应用很广泛。无线电技术的数据的发送和接受,主要体现在其传感器上,特别的是,现行的无线电通信系统集数据的采集、通信性能和数据的处理于一体,其在现有我国的汽车行业、航天航空领域应用越来越广泛,无线电技术的发展依赖于无线电系统的不断的更新和改进,无线电系统的性能,应该和无线电功能相适应,数据的实时传输型和实时显示,实时的保存记录和运行测试等数据的判断,均对无线电设备有着重要的影响。由于无线电技术的广泛的应用,其功能的改进,技术的进步,收到广大学者的关注和研究,本文将着重的论述无线电技术在航天航空上的的应用研究。
1 无线电技术的发展
19世纪中期,莫尔斯发明第一台电报机,标志着无线通信的发端;随后贝尔实现了有线电话的通讯,早期的无线电发射器过于笨重,由于使用的是功率很强的间歇放电发射器,因此不便于安装,携带等;到了20世纪30年代,阿姆斯特朗发命令FM方式无线电,是无线电技术应用的新的里程碑,采用FM调制解调技术,大大的提高了无线电设备工作灵敏度,能够有效的弥补传输过程中的快速衰落或波动性等缺陷,因此取代了先前的AM方式无线电,在无线通讯领域广泛应用。然而现在的无线电技术多使用卫星遥测定位技术,使得无线电通信更加迅速和便捷,无线电通讯误码率和误诊率大大的降低。20世纪中期,我国引进原苏联的遥测无线电系统,应用于军事上的导弹的测量和跟踪等方面,无线电技术能否实时快速跟踪目标并且锁定目标位置,使得军事防御与攻击显得更加可控,21世纪,我国投入基于GPS系统的无线通信手段于军用、明勇航天航空系统,汽车等领域,实现了实时跟踪航天航空分级位置,多点定位和对空定位等一系列技术难题,现行我国无线电通讯技术在不考虑我国的路由带宽的影响下,其效率相对比较低下,同世界其他各国的遥测系统而言,就水平比较较低下,我国无线电系统主要是数据速率低、最高码率才只是每秒2兆,而且与国际先进水平相比,国外同类产品至少是每秒5兆;因此我国在无线电通讯领域仍处于相对薄弱的地位。
2 无线电技术于航天航空应用分析
北京2008年奥运会,为了确保广播电视的实时有效的播出,就是采用无线电技术实现信号的传输,无线电通讯系统设置站点的实时检测和远程控制等操作,在实况转播期间,采用无线电通讯技术,广播电视的播出能够实时有效的传输,全球覆盖,其盲区也很小。无线电通讯系统,实现了对网内各站点的实时检测,设备的远程操作,数据的实时传输等功能的实现,使得用户可以能够实时的发现问题,并及时的更正,节约了大量的人力、物力、财力,使得无线电技术得到更多备受关注。
无线电技术,是采用无线电作为传输介质进行信息的发送和接受的,无线电通信,又叫移动通信,例如常见的手机、车载台、航天航空飞机等等,由于目标的移动,因此常导致移动通信中的动中通信问题,如发生多普勒现象,信号衰落等等。对于航天航空上的应用,假设当移动接受台由向(航天飞机)以的速度移动时,发生的多普勒频移可以表示为:
其中表示载波频率,表示光速,表示多普勒频移,表示最大多普勒频移,和入射角无关,它是为0时的最大值,表示移动台的相对运动速度。可以看到,多普勒频移与载波频率和移动台运动速度成正比。
特别对于航天航空系统而言,接受端常常是移动终端,因此很可能在移动接收台与发送台相对移动速度较快时产生多普勒效应使信号频率产生偏移,这种偏移被称为多普勒频移,由于发送端和接收端之间的运动是随时间变化的,所以接受端信号的多普勒频移也是时变的。因此对于一般的移动通信网络技术较难以实现航天航空飞机上的无线电通讯,无线电通讯技术近十几年在航天航空上应用取得了不少的进步,具有较好的应用情景,其主要通过GPS卫星定位,实现相关的数据的传输,对行器的定位特性,对多点对一点,一点对一点等等通讯技术较成熟,应用较广泛,特别是民航。
针对航天航空上应用的无线电技术,信号的同步问题是解决信号失真的关键,现行的通用的,较系统的无线电技术要数单频网技术。单频网络的另一个重要的应用是蜂窝单频网,例如蜂窝技术常常应用在设备到设备(D2D)的传输系统中,较常见的是LTE系统(引入OFDM和多天线MIMO等关键传输技术)。单频网技术在应用过程中,需要采用大功率的发射机将所广播出去的信号,按照频率同步、时间上同步,发送码元同步等原则进行信号的传输。其中频率的同步则是要求每个单频网发射机的工作频率f相同,对于正交频分复用技术(OFDM)调制方式而言,信号的每个子载波的频率应该是相等的。频率同步是其信号接收的实时性和准确性的根本保证,频率不相同,易导致信号的失真,造成信号的误码率增大,因此一般单频网的是确保来自GPS信号的锁相环同步等功能。
目前,针对GPS定位性能,我国的遥测系统在频段方式上处于不断的完善中。遥测系统主要应用在军事上和民用上和医用上,例如1964年到1986年期间,我国先后研制的两弹一星,其中大容量的遥测系统提供了较大的技术支撑。遥测技术是一个集成性能好的,具有良好的跟踪性能、遥控性能的一种新型的技术,其应用很广泛。遥测技术的集成性能,主要体现在其集传感器、数据的采集、通信性能和数据的处理于一体,其在现有我国的汽车行业、航天航空领域应用越来越广泛,遥测技术的发展依赖于遥测系统的不断的更新和改进,遥测系统的性能,应该和遥测功能相适应,数据的实时传输型和实时显示,实时的保存记录和运行测试等数据的判断,均对遥测设备有着重要的影响。与国际先进水平相比,国外同类产品至少是每秒5兆;现行我国的遥测系统不具备适应CCSDS标准的测控能力,对于多个目标的跟踪的实时性和准确性难以保证,而且遥测系统的体积也过于庞大,系统的可靠性不强,使用寿命也较低下,这是我国遥测系统下一阶段发展要改进的地方。
3 结论
我国无线电技术突飞猛进,技术在不断地革新,近十年的发展,我国无线电技术取得了较大的进步,随着科技的进步,给无线电技术带来了相关的更高的要求。无线电技术是一个集成性能好的,具有良好的发射、跟踪、遥控、接受的一种新型的技术,在现有我国的汽车行业、航天航空领域应用越来越广泛。
参考文献
[1]白效贤.试飞测试技术现状与发展[J].测控技术,2004,23(10).
[2]陆同兴,路轶群.激光光谱技术原理及应用.合肥:中国科学技术大学出版社,1999:170-172.
[3]廖志英,董安邦.基于C/S和B/S混合结构的管理信息系统运行模式[J].计算机工程与应用,2002,38(2): 84-85.
关键词:搅拌摩擦焊;航空;航天
中图分类号:TG45 文献标识码:A
焊接技术就是高温或高压条件下,使用焊接材料(焊条或焊丝)将两块或两块以上的母材(待焊接的工件)连接成一个整体的操作方法。焊接技术存在着减轻结构重量、提高结构性能等优势,在航空航天制造中已经由辅助工艺转变为飞机制造的关键技术。在航空航天业领域里,特种焊接技术所占的比例和应用面正在逐渐扩大,其中又以高能束流焊接技术以及固态焊技术(摩擦焊、扩散焊等)电子束焊接、等离子束焊接和激光焊接为代表。先进焊接技术的发展为飞机、发动机的设计、构造提供了技术支持,大大促进了发动机性能的提高,对先进飞机制造与生产,航天航空工业的发展提供了广阔的空间。
1 搅拌摩擦焊的原理
搅拌摩擦焊技术(Faction Stir Welding,简称FSW)是英国焊接研究所(简称TWI)在1991年发明的新型固相连接技术,具有无飞溅,无需焊接材料,不需要保护气体,被焊材料损伤小,焊缝热影响区小,焊缝强度高等特点,被誉为“当代最具革命性的焊接技术。是世界焊接技术发展史上自发明到工业应用时间跨度最短和发展最快的一项固相连接新技术。它是利用一种非耗损的搅拌头,高速旋转着压入待焊界面,摩擦加热被焊金属界面使其产生热塑性,在压力、推力和挤压力的综合作用下实现材料扩散连接,形成致密的金属间固相连接。搅拌摩擦焊与其它常规焊接方法一样都是利用摩擦热作为焊接热源。搅拌摩擦焊是由一个圆柱体形状的焊头伸入到工件的接缝处,由于焊头高速旋转与焊接工件材料之间发生摩擦,连接部位的材料由于温度升高而软化,同时通过对材料进行搅拌摩擦进而完成焊接。
2 搅拌摩擦焊的特点
2.1 先进的固相连接技术
搅拌摩擦焊相对于惯性摩擦焊与线性摩擦焊而言,是一种新型的固相连接技术,与传统的熔焊工艺比较,固态焊接是使母材保持在塑性状态下,保持在母材未融化的状态下进行的,其显微组织为细晶组织与母材的锻态组织非常接近。焊接后焊缝组织的力学性能与母材相当甚至要超过母材的原有力学性能。固态焊接的另一个优势在于焊接过程的机械化、自动化程度高,不需要特殊的焊接技术人员,固态焊接包括摩擦焊和扩散焊,在民用航空发动机的结构整体化设计及制造中,固态焊接作为一种先进的焊接技术,正发挥着越来越重要的作用。
搅拌摩擦焊主要是依靠旋转和工件的相对运动来完成,相对于惯性摩擦焊与线性摩擦焊高昂的设备来说,搅拌摩擦焊对设备的要求不高,只要具备以上两种运动即可,如一台铣床就可以完成简单的小型平板搅拌摩擦焊,专业的搅拌摩擦焊设备的可靠性更高,焊接过程的可重复性更好好。
2.2 广泛的应用范围
搅拌摩擦焊在焊接过程中,材料不会融化,因此接头不会产生粗大的柱状晶、偏析、夹杂、裂纹和气孔等与熔化和凝固冶金有关的焊接缺陷及焊接脆化等现象;轴向压力和扭矩共同作用下焊接材料会产生晶粒细化、组织致密等力学冶金效应,同时具备自清洁的功能,以上因素决定了搅拌摩擦焊工艺不但性能优异,而且应用广泛,,除传统的金属焊接外,还可进行粉未合金、复合材料、功能材料、难熔材料等新型材料的焊接,尤其适用于铝—铜、铜—钢、高速钢—碳钢、高温合金—碳钢等异种材料的焊接,甚至如陶瓷—金属、硬质合金—碳钢、钨铜粉末合金—铜等性能差异非常大的异种材料也可连接。
同时,搅拌摩擦焊还具有广泛的结构尺寸以及接头形式适应性。可用于棒对棒、管对管、管对棒、管(棒)对板等的焊接,在任何位置几乎都可以实现准确的定位。
2.3 绿色、清洁的焊接工艺
搅拌摩擦焊在焊接过程中火花、无弧光、无飞溅、无辐射无烟雾、高频以及害气体等对环境产生影响的污染源,是一种绿色、清洁的焊接工艺。
3 搅拌摩擦焊技术在航空航天工业中的应用
在航空航天领域里,新材料、此工艺大量使用,世界范围内的相关公司都对搅拌摩擦焊做了大量的研究,如飞机机身的纵向、环向、预成形件的搅拌摩擦焊连接、飞机起落架传动支承门、飞机方向翼板、飞机中心翼盒盖板、飞机蒙皮制造、飞机机翼蒙皮结构的修理、飞机地板搅拌摩擦焊以及新型商业飞机的搅拌摩擦焊等。
美国 Eclipse公司在Eclipse N500型商务飞机制造中首次大规模成功运用了 FSW技术, 包括飞机蒙皮、翼肋、弦状支撑、飞机地板以及结构件的装配等基本上都采用搅拌摩擦焊技术制造,其中70%的铆接被焊缝替代,这不仅极大地提高了连接质量,而且使生产效率提高了近10倍,可以比自动铆接快6倍,比手动铆接快60倍,共计节省成本约2/3。波音公司将搅拌摩擦焊技术用于C-17和C-130运输机地板的制造,利用搅拌摩擦焊代替紧固件连接,简化了地板结构设计并提高了构件的生产效率,生产成本降低了20%。总之,FSW技术正处于深入研究和推广应用阶段,存在着巨大的应用发展潜力。
总之,搅拌摩擦焊接是一种优质、高效、低耗、清洁的先进焊接制造工艺,在航空航天工业领域中具有巨大的技术潜力和广阔的市场应用前景。通过与计算机、信息处理、软件、自动控制、过程模拟、虚拟制造等高技术的紧密结合,搅拌摩擦焊接正在以高新技术面貌展现在人们面前。
参考文献
[1]王亚军,卢志军. 焊接技术在航空航天工业中的应用和发展建议[J].航空制造技术,2008(16):26-31.
关键词: 电子束焊;激光焊;搅拌摩擦焊;线性摩擦焊;扩散焊
中图分类号: V26 文献标识码:A
焊接是通过加热、加压,或两者并用,使同性或异性两工件产生原子间结合的加工工艺和联接方式。焊接既可用于金属,也可用于非金属。在航空航天装备和材料加工过程中,焊接技术有着举足轻重的地位。
1电子束焊
电子束焊( EBW)是在真空环境下利用会聚的高速电子流轰击工件接缝,将电子动能转变为热能,使被焊金属熔合的一种焊接方法。作为高能束流加工技术的重要组成部分,电子束焊具有能量密度高、焊接深宽比大、焊接变形小、可控精度高、焊接质量稳定和易实现自动控制等突出优点,也正是山于这些特点,电子焊接技术在航空、航天、兵器、电子、核工业等领域已得到广泛的应用。在航空制造业中,电子束焊接技术的应用,大大提高了飞机发动机的制造水平,使发动机中的许多减重设计及异种材料的焊接成为现实,同时为许多整体加工难以实现的零件制造提供了一种加工途径;另外,电子束焊接本身所具有的特点成功地解决了航空、航天业要求各种焊接结构具有高强度、低重量和极高可靠性的关键技术问题。所以在国内外的航空和航大工业中,电子束焊接已成为最可靠的连接方法之一。
2激光焊
激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,如果焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺。激光焊具有焊接设备装置简单、能量密度高、变形小、精度高、焊缝深宽比大、能在室温或特殊条件下进行焊接、可焊接难熔材料等优点。激光焊接主要用机大蒙皮的拼接和机身附件的装配。美国在20世纪70年代初的航空航天工业中,已利用15kW的CO2仿激光焊机弧光器针对飞机制造业中的各种材料、零部件进行了激光焊接试验、评估及工艺的标准化。空中客车公司A340飞机的全部铝合金内隔板均采用激光焊接,减轻了机身重量,降低了制造成本。
3搅拌摩擦焊
搅拌摩擦焊技术是英国焊接研究所(简称TWI)在1991年发明的新型固相连接技术,是世界焊接技术发展史上自发明到工业应用时间跨度最短和发展最快的一项固相连接新技术。它是利用一种非耗损的搅拌头,高速旋转着压入待焊界面,摩擦加热被焊金属界面使其产生热塑性,在压力、推力和挤压力的综合作用下实现材料扩散连接,形成致密的金属间固相连接。它具有无飞溅,无需焊接材料,不需要保护气体,被焊材料损伤小,焊缝热影响区小,焊缝强度高等特点,被誉为“当代最具革命性的焊接技术。美国 Eclipse公司在Eclipse N500型商务飞机制造中首次大规模成功运用了FSW技术, 包括飞机蒙皮、翼肋、弦状支撑、飞机地板以及结构件的装配等基本上全部利用搅拌摩擦焊技术制造,70%的铆接被焊缝替代,不仅极大地提高了连接质量,而且使生产效率提高了近10倍,生产成本大大降低。波音公司将搅拌摩擦焊技术用于C-17和C-130运输机地板的制造,利用搅拌摩擦焊代替紧固件连接,简化了地板结构设计并提高了构件的生产效率,生产成本降低了20%。总之,FSW技术正处于深入研究和推广应用阶段,存在着巨大的应用发展潜力。
4线性摩擦焊
线性摩擦焊是一种在焊接压力作用下,利用被焊工件相对做线性往复摩擦运动产生热量,从而实现焊接的固态连接方法。它具有优质、高效、节能、环保的优点。20世纪80年代后期,MTU公司与罗罗公司合作,成功的将线性摩擦焊用于发动机整体钛合金叶盘的制造。目前,线性摩擦焊已经广泛应用于塑料工程和航空发动机叶盘式转子的制造。
5扩散焊
扩散焊又称扩散连接,是把两个或两个以上的固相材料紧压在一起,置于真空或保护气氛中加热至母材熔点以下温度,对其施加压力使连接界面微观塑性变形达到紧密接触,再经保温、原子相互扩散而形成牢固结合的一种连接方法。它具有接头质量好,焊后无需机加工,焊件变形量小,一次可焊多个接头等优点。扩散焊已在直升飞机上钛合金旋翼桨毂、飞机大梁、发动机机匣以及整体涡轮等方面试用,涡轮叶片、钛合金宽叶弦蜂窝夹层风扇叶片等的扩散焊已应用于生产。
焊接技术是航空航天领域的重要连接技术,它在促进航空航天制造技术的发展、实现飞行器的减重、高效中发挥着越来越重要的作用。可以预见,我国航空航天工业在突飞猛进的焊接技术的推动下定将取得快速发展。
参考文献
[1]黄刚.电子束焊接技术在航空产品中的应用[J]. 四川兵工学报,2010,31(5):73-76.
[2]毛智勇.电子束焊接技术在大飞机中的应用分析[J].航空制造技术,2009,(2):92-94.
[3]张益坤,成志富.电子束焊接技术在航天产品中的应用[J].航空制造技术,2008,(21):52-53.
[4]康文军,梁养民.电子束焊接在航空发动机制造中的应用[J].航空制造技术,2008,(21):54-56.
[5]王亚军,卢志军. 焊接技术在航空航天工业中的应用和发展建议[J].航空制造技术,2008,(16):26-31.
[6]沈以赴,顾冬冬,陈文华.航空航天焊接及成形典型技术[J]. 航空制造技术,2008,(21):40-44.
[7]丁丽丽,何旭斌,胡进.搅拌摩擦焊技术在军用飞机航空修理中的应用[J].电焊机,2004, 130-134.
[8]岩石. 航空航天先进特种焊接技术应用调查报告[J]. 航空制造技术,2010,(9):58-59.
关键词:航空航天器;技术创新;回归分析
中图分类号:F426.5 文献标志码:A 文章编号:1673-291X(2016)11-0180-02
引言
技术创新在当今世界性竞争中起着越来越关键的作用,是一个国家竞争力的主要源泉,航空航天器制造业作为高技术产业,技术创新的能力与作用更加重要。我国航空航天器制造业无论是用于技术创新投入的资金或是受过良好教育的研发人员,均十分稀缺。这就要求在对航空航天器制造业技术创新投入进行决策时,必须有坚实的科学根据,以使有限的技术创新资源得到充分利用。但是,长期以来,由于科技数据的限制,有关中国航空航天器制造业技术创新投入产出的定量分析相对匮乏。笔者通过对航空航天器制造业技术创新投入产出的定量分析,得出这一高技术产业技术创新的能力与作用,为相关政策制定者提供依据,使决策更为科学客观。
(一)指标选择
技术创新的衡量涉及到创新过程的三个主要方面:创新投入,如资金和人力资源;创新的中间产出,如新发明和新知识;创新的最终产出,如不断提高的收入和利润。在考察技术创新过程时,采用R&D费用和从事研究的科学家和工程师数量这两项指标作为技术创新投入指标,专利申请量作为技术创新中间产出指标,产品销售收入作为技术创新的最终产出指标。
(二)数据说明
表1数据由《中国统计年鉴》整理得到,为我国航空航天器制造业大中型企业科技活动有关情况。由于中国航空航天器制造业基本属于国有大中型企业,因此,航空航天器制造业大中型企业科技活动有关数据可以代表这一产业的技术创新能力。
(一)技术创新投入与中间产出之间的关系分析
以专利申请量为因变量,R&D经费、科学家和工程师数量为自变量分析技术创新投入与中间产出之间的关系。首先,用Excel做因变量对于每一个解释变量的一元回归分析。其次,以专利申请量为因变量,R&D经费、科学家和工程师数量为自变量,对数据用Eviews5.0进行二元回归分析。
F-统计量与T-统计量的值均不大,说明模型的总显著性水平不高,参数也不显著,模型从总体上无效,专利申请量与科学家和工程师数量两变量之间不存在明显的相关关系。这也许是因为科学家和工程师数量对专利申请量的影响有些时滞,在后面的分析中将会考虑这一点。
虽然F-统计量的值较大,模型的总显著性水平比较高,但X2的T-统计量较小,参数并不显著。由此回归分析也可推测,科学家和工程师数量对专利申请量的影响可能存在时滞,导致了Y与X2的关系不那么有效。然而模型从总体上是有效的,这从F-统计量可以看出。
由上述分析和经济理论可知,专利申请量和R&D经费、科学家和工程师数量之间可能并不是简单的线性相关关系,它们之间是技术创新投入和中间产出的关系,因此可以考虑用道格拉斯生产函数模型进行估计:
模型从总体上是有效的,这从F-统计量可以看出。但X2的T-统计量依然较小,参数并不显著,可能仍然是科学家和工程师数量对专利申请量影响的时滞导致。
那么,将滞后变量引入模型进行修正,得到的比较理想的结果是将R&D经费、科学家和工程师数量同时滞后一期的模型:
不管是参数有效性的T-检验还是总显著性水平的F-检验,都是十分满意的。由以上模型可知,专利申请量对于R&D经费投入的弹性系数为β1=1.798999,说明我国航空航天器制造业R&D经费投入每增加1%,专利申请就增加1.798999%,对于科学家和工程师投入的弹性系数为β2 =1.562005,说明我国航空航天器制造业科学家和工程师投入每增加1%,专利申请就增加1.562005%。β2反映的是专利申请量的规模报酬情况,β1+β2 >1,专利申请量为递增规模报酬。这里,β1+β2=3.361004远大于1,说明技术创新投入R&D经费、科学家和工程师数量每同时增加1%,会带来中间产出专利申请量3.361004%的增长。也就是说,技术创新投入R&D经费、科学家和工程师数量增加的比例会带来中间产出专利申请量更大比例的增长。
(二)技术创新中间产出与最终产出之间的关系分析
以产品销售收入为因变量,专利申请量为自变量分析技术创新中间产出与最终产出之间的关系。用Excel对其进行回归分析,得到如下两行表达式:
F-统计量与T-统计量的值均较大,变量产品销售收入与专利申请量之间存在明显的正相关关系。从解释变量的系数7 085.639可以看出,专利申请量稍有提高,产品销售收入就会有很大的增长。因此,专利申请这一技术创新中间产出对最终产出产品销售收入有相当大的促进作用。
以上通过实证分析论证了在我国航空航天器制造业技术创新过程中,技术创新投入R&D经费、科学家和工程师数量的增加会带来中间产出专利申请量更大比例的增长,而专利申请这一技术创新中间产出又对最终产出产品销售收入有相当大的促进作用。首先,R&D投入(包括R&D经费、科学家和工程师数量)对专利产出具有正的、显著的影响,说明增加研发投入确实可以极大提高我国的技术创新能力(专利申请)。专利申请量对于R&D经费投入的弹性系数为β1=1.798999,对于科学家和工程师投入的弹性系数为β2=1.562005,β1+β2=3.361004,这些数据都明显高于发达国家。出现这种情况的原因主要是由于我国航空航天器制造业起步较晚,技术创新起点较低,因此稍有技术创新投入就会带来较大的专利产出;而发达国家这一产业起步早,技术创新能力已经很强,再要进行原始创新难度很大。其次,技术创新中间产出专利申请对最终产出产品销售收入有相当大的促进作用。回归系数为7 085.639,说明专利申请量稍有提高,产品销售收入就会有很大的增长。这主要是由于我国地广人密,企业数量较多,一旦专利申请增加,技术创新能力有所提高,新技术就会得到广泛应用,从而使产出获得较大增长,产品销售收入随即增长。再次,我国航空航天器制造业从研发投入到最终取得产品销售收入是通过技术创新中间产出专利申请这一中间变量联系起来的,中间产出对投入反映较敏感,最终产出对中间产出反映较敏感,那么投入对最终产出的间接影响更是非常可观。因此,政府应制定国家航空航天器制造业总体发展战略和相应的产业政策,支持航空航天器制造业进行产业结构调整与优化,加快我国航空航天器制造业的高技术产业化进程,使其成为国民经济支柱产业。
参考文献:
[1] 王国顺,张涵,邓路.R&D存量、所有制结构与技术创新效率――高技术产业面板数据的实证研究[J].湘潭大学学报,2013,(3).
Leitz高精密高效率复合式测量解决方案,将先进的四轴联动技术、创新的FOP光纤测头技术以及Leitz PMM高效率高精度模拟扫描技术完美的结合在一起,实现航空发动机整体叶轮/叶盘等复杂工件高效、全自动测量,并将整体叶盘检测效率提升了95%。而FOP光纤测头特殊的测量长度延伸性能,解决了航空发动机双层盘类工件大尺寸底径复杂内腔的测量疑难。
用于叶片现场测量的B l a d eMaster–L车间型双激光测量技术可完成叶片高效率高精密全尺寸检测。
Leica大尺寸测量与扫描技术,在全球航空航天业拥有着极高的市场占有率,在复材的加工制造、大尺寸测量验证以及飞机柔性装配领域发挥着重要作用。洞悉分散在工厂各角落各环节质量数据信息背后的价值,将海量数据转化成直接用于工艺和生产决策的可视化信息,真正获利于数字化和信息化制造,是海克斯康计量MMS测量信息管理系统的中心。MMS支持MBD技术,兼容所有测量设备,涵盖从测量系统、测量工作、测量相关人员到全产品生命周期测量结果的关联性可视化信息的提取和传递,既简化车间操作且促进高层决策。